The two main categories of Achilles tendon disorder are broadly classified by anatomical location to include non-insertional and insertional conditions.

Non-insertional Achilles tendinopathy is often managed conservatively, and many rehabilitation protocols have been adapted and modified, with excellent clinical results. Emerging and popular alternative therapies, including a variety of injections and extracorporeal shockwave therapy, are often combined with rehabilitation protocols. Surgical approaches have developed, with minimally invasive procedures proving popular. The management of insertional Achilles tendinopathy is improved by recognising coexisting pathologies around the insertion. Conservative rehabilitation protocols as used in non-insertional disorders are thought to prove less successful, but such methods are being modified, with improving results. Treatment such as shockwave therapy is also proving successful. Surgical approaches specific to the diagnosis are constantly evolving, and good results have been achieved.

Cite this article: Bone Joint J 2013;95-B:1299–1307.

The two main categories of tendo Achilles disorder are classified according to anatomical location, to broadly include insertional and non-insertional conditions.

Non-insertional Achilles tendinopathy

This condition may affect 9% of recreational runners and causes up to 5% of professional athletes to end their careers. The underlying cause is multifactorial and as a result optimal treatment is unclear.

Degeneration of the body of the tendo Achilles has been found in 34% of tendons at autopsy and in 32% of ultrasound-screened asymptomatic individuals. In the acute phase there may be an inflammatory cellular reaction in the peritendineum, with circulatory impairment and oedema. The peritendineum may become filled with fibrinous exudate, perceived as crepitus, and may form adhesions, causing the more chronic condition of paratendinopathy. Injury within the tendon itself will also lead to an initial inflammatory response but an imbalance between matrix degeneration and synthesis may lead to tendinopathic changes. There are many factors implicated in this process, in particular the activity of matrix metalloproteinases (MMPs); specifically, decreased expression of MMP3 is associated with Achilles tendinopathy.

Non-operative management. The mainstay of treatment for non-insertional Achilles tendinopathy is conservative, with initial rest, modification of training regimes, specific exercises and correction of underlying lower limb malalignment with orthoses. Most patients will be able to return to previous activities, and in an eight-year follow-up study only 29% failed to respond adequately to non-operative management.

Non steroidal anti-inflammatory drugs (NSAIDs) have been shown to have a modest effect on symptoms, but this was not supported in a randomised study including a placebo arm. The scientific basis of NSAIDs use in chronic tendinopathy is questionable in the histological absence of inflammatory cells in the tendinopathic tissue. Any short-term benefit is likely to be due to their analgesic effect. Some studies have highlighted the possible detrimental effects of NSAIDs: celecoxib inhibits tendon cell migration and proliferation, and NSAIDs increase leukotriene B, which may contribute to the development of Achilles tendinopathy.

Corticosteroid injections are reported to reduce pain and swelling and improve the ultrasound appearance of the tendon but their vasoconstrictive action via prostacyclin, adrenoceptors and inhibition of nitric oxide synthase might be responsible. Corticosteroid injections...
may have some early benefit, but adverse effects were reported in up to 82% of corticosteroid trials,2;3 these include tendon rupture,20-23 and decreased tendon strength is reported in animal studies.24-27 Any possible benefit of corticosteroid injection appear to be outweighed by potential risks.28

Multiple studies and systematic reviews29-31 have found eccentric exercises to be beneficial in the early treatment of non-insertional Achilles tendinopathy, but the mechanism by which these work is poorly understood. It has been shown that they lead to normalisation of tendon structure, observed on ultrasound, with an apparent reduction in neovascularisation.32,33 The mechanical loading profile of eccentric exercises has been shown to produce increased stretching of the tendon compared with concentric exercises.34 Alfredson et al in a randomised study, reported that 82% of patients using eccentric exercises returned to normal activities at 12 weeks, compared with 36% who used concentric exercises, with sustained improvement at 12 months.35 The 12-week regime is taken as the reference standard for treating non-insertional tendinopathy, but six-week programmes have been described, also with reasonable results.36-38

Shockwave therapy. Conflicting results have been reported for extracorporeal shock wave therapy (ESWT), usually of low energy, but a recent randomised controlled trial (RCT) demonstrated significant improvement when this was combined with eccentric exercises compared with eccentric exercises alone,39 and a further RCT reported improved scores after ESWT, particularly in women.40 A non-randomised case-controlled study of patients failing to improve after at least three non-operative methods for a minimum of six months found improvement at 12 months.35 The 12-week regime is taken as the reference standard for treating non-insertional tendinopathy but six-week programmes have been described, also with reasonable results.36-38

Platelet-rich plasma (PRP). Platelet-rich plasma (PRP) has become widely used in various areas of orthopaedics, with some studies demonstrating improved tendon healing using PRP compared with controls37-40 but significant improvement in symptoms has not been found when using PRP to treat Achilles tendinopathy.41 A randomised double-blind placebo-controlled study42 evaluating eccentric exercises and PRP or saline injection showed no difference in improvement in pain and activity at six months, and a recent meta-analysis43 concluded that although there may be benefit in using PRP to increase the healing strength in tendo Achilles repair following acute rupture, there was no evidence of any benefit in using PRP in the treatment of Achilles tendinopathy.

Small studies44,45 with limited follow-up have demonstrated reduced pain and improved function following high-volume injections of 10 ml 0.5% bupivacaine and 40 ml normal saline into the paratenon. Chan et al46 reported symptom improvement in 30 patients retrospectively reviewed, in the absence of a control group, at a mean of 30 weeks, and subsequently in 11 athletes with a minimum of eight months' follow-up.45 However, 25 mg hydrocortisone was included in the injection, which may have affected their results, as this has been shown to provide early symptomatic improvement but is associated with a higher rate of later complications.

Intratendinous hyperosmolar dextrose (prolotherapy) is thought to produce a local inflammatory response and increase in tendon strength, but evidence to support its use is lacking.46 A pilot study by Maxwell et al47 demonstrated a reduction in tendo Achilles pain both at rest and with exercise, and in a small randomised study Yelland et al48 demonstrated improvements in outcome scores by combining prolotherapy with eccentric exercises.

Subcutaneous low-dose heparin aims to reduce adhesion formation, but evidence of its effect is conflicting and some reports suggest it can cause degenerative tendinopathy in rats.49,50 Aprotinin is a potent MMP inhibitor, and some studies have demonstrated its success in treating Achilles tendinopathy.51,52 However, in 2008 it was withdrawn because of severe complications with its use during heart surgery.53 Early reports using polidocanol (a sclerosing therapy used to obliterate the tendon neovascularisation) injected under Doppler ultrasound guidance into the abnormal vessels on the ventral aspect of the Achilles tendon demonstrated significant improvements in pain and function scores.54-56 However, these were small studies with limited follow-up using a drug that lacked approval by the United States Food and Drug Administration, and authors from other institutions have not reproduced these results.57 Along similar lines, electrocautery has been investigated, with one study reporting good results in a series of 11 patients followed for six months.58

THE BONE & JOINT JOURNAL
Further non-surgical options. The use of kinesiotape (elastic therapeutic skin tape) as a technique in the treatment of Achilles tendinopathy and a Cochrane database systematic review of deep frictional massage for tendinopathies failed to demonstrate significant benefit.80,81 Therapeutic ultrasound has been shown to reduce the swelling in the acute inflammatory phase of soft-tissue disorders,45 and may enhance tendon healing,82-86 but a systematic review and meta-analysis have failed to demonstrate any benefit of therapeutic ultrasound over placebo for tendinopathy.87,88 Dorsiflexion night splints are certainly a favoured treatment option for plantar fasciitis, with evidence to support their use,89 but recent studies have failed to show benefit from their use to treat non-insertional Achilles tendinopathy, whether combined with eccentric exercises or not.90,91

Surgical treatment. Conventional surgical treatment has consisted of open release of adhesions with or without resection of the paratenon.11,92,93 Macroscopic areas of tendinopathy are excised through a central longitudinal tenotomy, and multiple further tenotomies may be used on the surrounding tissue to initiate vascular ingrowth and a healing response.11,94

Even after extensive debridement there is normally enough tendon to achieve side-to-side closure of the principal tenotomy site. However, if > 50% of the tendon has been debrided, then augmentation is recommended. Small defects may be covered with a turn-down flap or using the plantaris tendon, but larger defects may require tendon transfer using, for example, peroneus brevis, flexor digitorum longus or flexor hallucis longus.93,95,96 Success rates for open surgery vary widely,97 but are generally reported as being between 75% and 100%.92-95

Complications are not uncommon, and in a large series of 432 consecutive patients Paavola et al96 reported wound necrosis in 3%, superficial infection in 2.5% and sural nerve injury in 1%, with further complications including haematoma, seroma and thrombosis, leading to an overall complication rate of 11% and re-operation in 3%. Minimally invasive techniques may reduce the risks associated with open surgery while maintaining or improving the success rate. Multiple stab wounds with a scalpel may be performed under local anaesthetic, creating longitudinal fissures in the tendinopathic area previously identified with ultrasound. Maffulli et al97 reported good to excellent results in 37 of 48 patients with this technique at a minimum of 22 months’ follow-up.

Stripping of the paratenon is thought to remove the neovascularisation and denervate the diseased area of the tendon. A four-incision technique has been developed using a suture passed between them to strip the dorsal and ventral surfaces of the tendon with or without longitudinal tenotomies but no clinical data have yet been published on their results.98 This technique has been conducted endoscopically with some reported improvement in small numbers of patients.99-101

Recent interest has focused on the role of the plantaris tendon, which is known to be stiffer and stronger than the tendon Achillis, and tethering of the plantaris to the medial aspect of tendo Achillis may initiate an inflammatory response and produce a localised tendinopathy.102,103 Stripping the plantaris in such patients has resulted in good outcomes with endoscopic techniques, with significant reductions in pain and improved function reported with the latter in 11 patients at two years.104,105 Gastrocnemius lengthening has been reported as beneficial: Dothan et al106 treated 14 patients and found that 79% were able to return to their previous sporting activities at two years’ follow-up with repeat MRI scans showing significant improvements in tendon quality at one year.

Insertional Achilles tendinopathy

Disorders of the Achilles insertion account for around 20% to 25% of tendo Achillis disorders.107 Predisposing factors are increasing age, inflammatory arthropathies, corticosteroid use, diabetes, hypertension, obesity, gout, hyperostotic conditions, lipidaemias and quinolone antibiotics.4,108,109 Other factors include genetic susceptibility,110-112 and extrinsic factors such as increased repetitive loading1,113,114 or inadequate footwear can contribute, with uneven wear causing excessive subtalar joint movement or poor shock absorption; uneven or sloping surfaces also play a role.1 Intrinsic hindfoot and lower limb malalignment and altered biomechanics of the subtalar joint in particular can result in micro-tears and tendinopathic changes.115-118

A posterosuperior calcaneal prominence, originally described by Haglund,119 has been associated with tendon attrition, pain and swelling.120 However, insertional spurs are probably an adaptive process of formation rather than being due to tendon micro-tears or inflammatory changes. The increased surface area secondary to ossification of the fibrocartilaginous insertion is probably protective during increased loading, but is still not particularly helpful in understanding their role in insertional tendinopathy.121

The anterior aspect of the insertion is commonly affected more than the posterior aspect in tendinopathy. As the posterior aspect undergoes a higher strain on dorsiflexion, it has been thought that stress shielding and potential under-use phenomenon have a role to play in the aetiology of insertional tendinopathy.122 However, the fact that fibrocartilaginous endochondral ossification of the insertion is more likely to occur on the anterior stress-shielded side123 means that the precise role of loading is complex. It may be that the assumption that the material properties are similar in the normal tendon structure means the stress is preferentially taken up in the ‘normal’ rather than the ‘tendinopathic’ side. Hence the anterior side is stress shielded.124

The retrocalcaneal bursa is lined with sesamoid and periosteal fibrocartilage. During dorsiflexion of the ankle these layers are apposed and the tendon is compressed against the calcaneal prominence. Changes such as synovial fold hypertrophy,125 calcification of the sesamoid fibrocartilage and cellular degeneration with bursal debris have been demonstrated.123
Non-operative, non-invasive therapy. Immobilisation is frequently used in the acute setting to control exacerbating factors, but prolonged immobilisation should be avoided. A rational treatment plan following any immobilisation should involve a gradual integration of reduced load-bearing activities and a monitored physical therapy or stretching regime.126

Patients who suffer from insertional disorders often have heel pain on loading. This can be due to ankle dorsiflexion causing retrocalcaneal bursa compression and impingement of the anterior fibres of the tendon.127 A graduated shoe raise or heel lift can alleviate pressure on the insertion by plantarflexing the heel. This may potentially accelerate healing of a degenerate tendon insertion.123 Hindfoot malalignment associated with insertional disorders can be corrected by insoles, if thought to be a provocative factor.118 Correction of evasion and pronation can improve symptoms.7

The 12-week eccentric exercise programme described by Alfredson et al139 is used with considerable success in non-insertional disorders, but two recent systematic reviews128,129 have shown that a successful outcome following eccentric loading exercise is less likely in insertional disorders, with success rates of 28% and 32% reported.130-133 This regime may cause the retrocalcaneal bursa to be compressed against the tendinopathic fibres of the anterior aspect of the Achilles tendon.132 In order to determine whether the effect of ankle dorsiflexion was detrimental in the full-motion eccentric programme, the activities were modified by Jonsson et al,132 eliminating the ankle dorsiflexion movement by using floor-level exercises only. They found improved outcomes in 67% of cases, compared with 32% for the original activities.

Regular stretching may increase the working length of the muscle–tendon unit and theoretically increase ankle dorsiflexion, although in reality perhaps by only 1°.134 A recent study used an initial immobilisation for six to eight weeks and a subsequent stretching regime for patients with retrocalcaneal pain. After a mean treatment duration of 163 days (151 to 1012), 88% were satisfied with the results. Diabetes, previous steroid injections, posterosuperior prominences and smoking were associated with poorer results. It is difficult to ascertain whether it was the immobilisation or the stretching that contributed most to the perceived success of the regime.126

The increasing evidence in support of ESWT for the treatment of insertional tendinopathy, and the development of smaller, cheaper machines, is leading to an increased use of this method. ESWT can stimulate a tissue response at variable depths under the targeting device.44 Many applications for the treatment of tendon Achilles disorders use a low-energy therapy (< 0.2 mJ/mm²) over multiple sessions.131,133 Another important parameter is the number of impulses emitted per treatment: often up to 2000 impulses in low-energy treatment and 3000 to 4000 in high-energy treatments.136

In a double-blind RCT, Rasmussen et al40 reported improvements in the American Orthopaedic Foot & Ankle Society (AOFAS) score137 of 70 to 88 in the intervention arm and 74 to 81 in the sham arm (p = 0.05). However, that study included both insertional and non-insertional disorders. Furia138 reported a good or excellent result in 82.9% of ESWT patients compared with 39.4% of conventionally treated patients. Although this was a significant difference, with strict inclusion criteria of insertional tendinopathy only and a standardised ESWT procedure in a large cohort (n = 68), the control arm treatment was hugely varied and not clearly stratified. Another RCT compared eccentric exercises with ESWT and found improved results in the shockwave group (p < 0.002).131 A recent systematic review suggested promising results at a minimum of three months’ follow-up, but did not stratify the results according to insertional and non-insertional disorders.139

Non-operative invasive management. Corticosteroids have been used in isolated cases of retrocalcaneal bursitis,140,141 but the volume of evidence is lacking. The historic risk of tendon rupture142,143 probably explains their relatively infrequent use. Prolotherapy essentially irritates the tendon to stimulate a healing response through the release of pro-inflammatory mediators.144 Hyperosmolar dextrose solution is commonly used, often coupled with an anaesthetic. A study by Ryan, Wong and Taunton145 is widely quoted, which reported 22 patients treated with a median of five injections (1 to 13) of 1 ml lidocaine plus 1 ml 50% dextrose given once every three to eight weeks. The pain scores were reduced significantly at follow-up over 28 months but satisfaction scales were not used. Only one study using a sclerosing agent on insertional disease is reported, where 11 patients received repeated injections (up to five) and showed a reduction in pain after eight months, with a 73% satisfaction rate.146 Monto147 treated 30 patients (eight insertional tendinopathy, 22 non-insertional) with a single injection of 4 ml PRP, with a resultant mean AOFAS score increase from 34 to 88 at 24 months, although two of the eight insertional tendinopathies were classed as treatment failures owing to patient dissatisfaction and eventual surgery. Radiofrequency coblation (a controlled non-heat-driven process to break molecular bonds within tissues and dissolve) was used in 47 cases, 20 of whom had separate stab incisions made over the insertion and a micro-probe inserted into each hole. There was a 6.4% tendon rupture rate and a 15% re-operation rate but no functional outcome data were presented.148

Surgical therapy. Calcaneoplasty can be performed endoscopically with retrocalcaneal bursal debridement. This procedure affords small scars, minimal morbidity and a rapid return to activity.149 Appropriate patient selection requires accurate clinical and radiological assessment and a diagnosis of retrocalcaneal bursitis150 after exhaustive conservative therapies. The surgical technique has been reported with a variety of modifications and portal placements.151-154 Surgery can result in good/excellent outcomes.
in > 75% to 95% of cases, but infrequent complications such as early rupture of the tendon have been encountered.149,152,155 The increasing popularity of endoscopic treatments has meant that osteotomies such as that described by Zadek156 and Keck and Kelly157 requiring longer immobilisation and rehabilitation, are less frequently seen.

Open surgery is usually reserved for recalcitrant disease in which conservative options have proved unsuccessful. The surgical plan must include debridement of the degenerate insertion, decompression of bursal tissue, resection of the bony prominence, reattachment of the insertion as required, and/or augmentation of the tendon Achilles with a tendon transfer/graft. Caution should be exercised in patients who are smokers, diabetic or who have peripheral vascular disease.138,159 Numerous incisions are described, including longitudinal tendon splitting,160-162 medially based,93,163 Cincinatti/transverse164 and laterally based.165,166 There appears to be no significant advantage of one over another in published series.

Biomechanical and clinical data suggest that 50% of the tendon attachment can be safely debrided with minimal risk of re-rupture.162,167 Reattachment can be carried out using bone anchors/screws or trans-osseous sutures. Recent mechanical data suggest that single- or double-row repairs result in similar peak loads to failure168 but in complete detachments the footprint of the insertion can probably be better restored if double-row techniques are used. As long as proper reattachment is performed the tendon should maintain normal plantarflexion.169 Despite debriding up to 70% of the insertion, Nunley et al161 did not routinely augment and still achieved 96% satisfaction with good function at seven years. Reattachment has been described using a variety of methods,160,162,170-173

The most frequently used method of reconstruction method is augmentation using flexor hallucis longus (FHL), as it is in action during the same phase of gait, is in close proximity, has good vascularity with its low-lying muscle belly, and is the second strongest plantarflexor.174 Both single- and double-incision techniques are described. The potential pitfall of the single-incision technique is the shorter length of tendon retrieved.175,176 The double-incision technique carries added morbidity with dissection around the neurovascular bundle in the midfoot. More minimally invasive FHL harvesting techniques have been reported.177

Peroneus brevis transfer has been described,178 although a major concern is increased ankle instability and the development of foot inversion. Flexor digitorum longus (FDL) transfer is used, but is significantly weaker than the FHL (by approximately 50%)174 and its new course could cross the tibial nerve. Alternative autografts include patellar bone/quadriceps or patellar tendon, but this can cause morbidity of the knee joint179,180 or hamstrings.181 V/Y advancement of the gastrosoleus aponeurosis can bridge insertional defects > 2 cm. Wagner et al163 compared advancements to simple debridments and reported no functional differences but those requiring advancements had more extensive disease.

A recent systematic review describes a rate of minor complications of 20% and a 3.1% rate of major complications.125 Wound infection rates vary from 0% to 13% but most series report on a mix of insertional and non-insertional reconstruction.161,164,171,179,182,183 The largest study96 reviewed 432 patients and found that 4.7% of the insertional group had wound complications, including significant local necrosis.

In two systematic reviews, Wiegerink et al128 quoted 89% overall satisfaction, and Kearney and Costa129 simply mentioned that the studies reviewed report good/excellent outcomes in most. Overall, most studies report satisfaction rates from 82% to 97% and significant improvements in function scores with reasonable follow-up (over four years in some).161,164,170,171,179,182-184 There is no evidence to suggest that one particular method, i.e. FHL graft or detachment/reattachment versus debridement,163 is superior from published data, but few directly comparative studies exist.

In conclusion, the majority of patients with non-insertional tendinopathy will respond to non-surgical management. Rest may be useful in the acute phase, and a structured course of eccentric exercises in more chronic cases. Paratenon injections and shockwave therapy may have a role. In the 20% to 30% of patients who do not respond surgery may be necessary, where minimally invasive techniques may reduce the risks of complications. Satisfactory outcomes following surgery may be expected in about 85% of patients.

In diagnosing insertional disorders clear distinctions exist between the differing pathologies described, and as a result differing therapies can be instituted. Early use of floor-level eccentric exercises is promising, and shockwave therapy is low risk and has evidence to support its use, but is probably less effective than in non-insertional disease. Endoscopic surgical excision of calcaneal prominences and/or bursae may be beneficial, but the procedure can be technically challenging. Open surgical debridement and reattachment with or without augmentation should be considered after all other treatment modalities have failed, with > 80% of patients likely to gain significant benefit.

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

This article was primary edited by D. Rowley and first-proof edited by G. Scott.

References

THE BONE & JOINT JOURNAL
ACHILLES TENDINOPATHY

69. Tatari H, Ko...

