Tag Archives: depression

Ketamine IV reduces suicidal thinking in depressed patients |703-844-0184 | Ketamine therapy for Anxiety and Depression| IV Ketamine for depression, PTSD, bipolar disorder, and others | Ketamine therapy for depression | 703-844-0184 | Fairfax, Va 22304 |

NOVA Health Recovery  <<< Ketamine Treatment Center Fairfax, Virginia

CAll 703-844-0184 for an immediate appointment to evaluate you for a Ketamine infusion:

Ketaminealexandria.com    703-844-0184 Call for an infusion to treat your depression. PTSD, Anxiety, CRPS, or other pain disorder today.

email@novahealthrecovery.com  << Email for questions to the doctor

Ketamine center in Fairfax, Virginia    << Ketamine infusions

Ketamine – NOVA Ketamine facebook page – ketamine treatment for depression

facebook Ketamine page

NOVA Health Recovery  << Ketamine clinic Fairfax, Va  – Call 703-844-0184 for an appointment – Fairfax, Virginia

Ketamine Consultants Blog

Ketamine has much support in the use of hard-to-treat depression and suicidal behaviors. Below are studies and their links, including a meta-analysis, which demonstrate the effect of Ketamine. Also a recent trial by Carlos Zarate shows the heterogenous nature of response to Ketamine . It is difficult to say who is going to be lifted from their depression completely or partially respond, but in the study, Dr. Zarate showed that patients with a long history of suicidal thinking and self-harm will have less of a response in some cases.

NOVA Health Recovery | 703-844-0184 | Fairfax, Virginia 22304
NOVA Health Recovery | 703-844-0184 | Fairfax, Virginia 22304

Intravenous ketamine may rapidly reduce suicidal thinking in depressed patients << Article link 

Intravenous ketamine may rapidly reduce suicidal thinking in depressed patients

Repeat intravenous treatment with low doses of the anesthetic drug ketamine quickly reduced suicidal thoughts in a small group of patients with treatment-resistant depression. In their report receiving Online First publication in the Journal of Clinical Psychiatry, a team of Massachusetts General Hospital (MGH) investigators report the results of their study in depressed outpatients who had been experiencing suicidal thought for three months or longer.

“Our finding that low doses of ketamine, when added on to current antidepressant medications, quickly decreased suicidal thinking in depressed patients is critically important because we don’t have many safe, effective, and easily available treatments for these patients,” says Dawn Ionescu, MD, of the Depression Clinical and Research Program in the MGH Department of Psychiatry, lead and corresponding author of the paper. “While several previous studies have shown that ketamine quickly decreases symptoms of depression in patients with treatment-resistant depression, many of them excluded patients with current suicidal thinking.”

It is well known that having suicidal thoughts increases the risk that patients will attempt suicide, and the risk for suicide attempts is 20 times higher in patients with depression than the general population. The medications currently used to treat patients with suicidal thinking — including lithium and clozapine — can have serious side effects, requiring careful monitoring of blood levels; and while electroconvulsive therapy also can reduce suicidal thinking, its availability is limited and it can have significant side effects, including memory loss.

Primarily used as a general anesthetic, ketamine has been shown in several studies to provide rapid relief of symptoms of depression. In addition to excluding patients who reported current suicidal thinking, many of those studies involved only a single ketamine dose. The current study was designed not only to examine the antidepressant and antisuicidal effects of repeat, low-dose ketamine infusions in depressed outpatients with suicidal thinking that persisted in spite of antidepressant treatment, but also to examine the safety of increased ketamine dosage.

The study enrolled 14 patients with moderate to severe treatment-resistant depression who had suicidal thoughts for three months or longer. After meeting with the research team three times to insure that they met study criteria and were receiving stable antidepressant treatment, participants received two weekly ketamine infusions over a three-week period. The initial dosage administered was 0.5 mg/kg over a 45 minute period — about five times less than a typical anesthetic dose — and after the first three doses, it was increased to 0.75 mg/kg. During the three-month follow-up phase after the ketamine infusions, participants were assessed every other week.

The same assessment tools were used at each visit before, during and after the active treatment phase. At the treatment visits they were administered about 4 hours after the infusions were completed. The assessments included validated measures of suicidal thinking, in which patients were directly asked to rank whether they had specific suicide-related thoughts, their frequency and intensity.

While only 12 of the 14 enrolled participants completed all treatment visits — one dropped out because of ketamine side effects and one had a scheduling conflict — most of them experienced a decrease in suicidal thinking, and seven achieved complete remission of suicidal thoughts at the end of the treatment period. Of those seven participants, two maintained remission from both suicidal thinking and depression symptoms throughout the follow-up period. While there were no serious adverse events at either dose and no major differences in side effects between the two dosage levels, additional studies in larger groups of patients are required before any conclusions can be drawn.

“In order to qualify for this study, patients had to have suicidal thinking for at least three months, along with persistent depression, so the fact that they experienced any reduction in suicidal thinking, let alone remission, is very exciting,” says Ionescu, who is an instructor in Psychiatry at Harvard Medical School. “We only studied intravenous ketamine, but this result opens the possibility for studying oral and intranasal doses, which may ease administration for patients in suicidal crises.”

She adds, “One main limitation of our study was that all participants knew they were receiving ketamine. We are now finishing up a placebo-controlled study that we hope to have results for soon. Looking towards the future, studies that aim to understand the mechanism by which ketamine and its metabolites work for people with suicidal thinking and depression may help us discover areas of the brain to target with new, even better therapeutic drugs.”


Rapid and Sustained Reductions in Current Suicidal Ideation Following Repeated Doses of Intravenous Ketamine: Secondary Analysis of an Open-Label Study  << Article in Clinical Psychiatry

Ketamine for Rapid Reduction of Suicidal Thoughts in Major Depression: A Midazolam-Controlled Randomized Clinical Trial Article link for below:

Ketamine was significantly more effective than a commonly used sedative in reducing suicidal thoughts in depressed patients, according to researchers at Columbia University Medical Center (CUMC). They also found that ketamine’s anti-suicidal effects occurred within hours after its administration.

The findings were published online last week in the American Journal of Psychiatry.

According to the Centers for Disease Control and Prevention, suicide rates in the U.S. increased by 26.5 percent between 1999 and 2015.

“There is a critical window in which depressed patients who are suicidal need rapid relief to prevent self-harm,” said Michael Grunebaum, MD, a research psychiatrist at CUMC, who led the study. “Currently available antidepressants can be effective in reducing suicidal thoughts in patients with depression, but they can take weeks to have an effect. Suicidal, depressed patients need treatments that are rapidly effective in reducing suicidal thoughts when they are at highest risk. Currently, there is no such treatment for rapid relief of suicidal thoughts in depressed patients.”

Most antidepressant trials have excluded patients with suicidal thoughts and behavior, limiting data on the effectiveness of antidepressants in this population. However, previous studies have shown that low doses of ketamine, an anesthetic drug, causes a rapid reduction in depression symptoms and may be accompanied by a decrease in suicidal thoughts.

The 80 depressed adults with clinically significant suicidal thoughts who enrolled in this study were randomly assigned to receive an infusion of low-dose ketamine or midazolam, a sedative. Within 24 hours, the ketamine group had a clinically significant reduction in suicidal thoughts that was greater than with the midazolam group. The improvement in suicidal thoughts and depression in the ketamine group appeared to persist for up to six weeks.

Those in the ketamine group also had greater improvement in overall mood, depression, and fatigue compared with the midazolam group. Ketamine’s effect on depression accounted for approximately one-third of its effect on suicidal thoughts, suggesting the treatment has a specific anti-suicidal effect.

Side effects, mainly dissociation (feeling spacey) and an increase in blood pressure during the infusion, were mild to moderate and typically resolved within minutes to hours after receiving ketamine.

“This study shows that ketamine offers promise as a rapidly acting treatment for reducing suicidal thoughts in patients with depression,” said Dr. Grunebaum. “Additional research to evaluate ketamine’s antidepressant and anti-suicidal effects may pave the way for the development of new antidepressant medications that are faster acting and have the potential to help individuals who do not respond to currently available treatments.”

Ketamine for Rapid Reduction of Suicidal Thoughts in major depression – A midazolam controlled trial PDF article

Ketamine for depression | PTSD | 703-844-0184 | NOVA Health Recovery | Fairfax, Virginia 22304
Ketamine for depression | PTSD | 703-844-0184 | NOVA Health Recovery | Fairfax, Virginia 22304


Ketamine as a Potential Treatment for Suicidal Ideation A Systematic Review of the Literature 2015

Objective To review the published literature on the efficacy
of ketamine for the treatment of suicidal ideation (SI).
Methods The PubMed and Cochrane databases were
searched up to January 2015 for clinical trials and case
reports describing therapeutic ketamine administration to
patients presenting with SI/suicidality. Searches were also
conducted for relevant background material regarding the
pharmacological function of ketamine.
Results Nine publications (six studies and three case
reports) met the search criteria for assessing SI after
administration of subanesthetic ketamine. There were no
studies examining the effect on suicide attempts or death
by suicide. Each study demonstrated a rapid and clinically
significant reduction in SI, with results similar to previously
described data on ketamine and treatment-resistant
depression. A total of 137 patients with SI have been
reported in the literature as receiving therapeutic ketamine.
Seven studies delivered a dose of 0.5 mg/kg intravenously
over 40 min, while one study administered a 0.2 mg/kg
intravenous bolus and another study administered a liquid
suspension. The earliest significant results were seen after
40 min, and the longest results were observed up to
10 days postinfusion.
Conclusion Consistent with clinical research on ketamine
as a rapid and effective treatment for depression, ketamine
has shown early preliminary evidence of a reduction in
depressive symptoms, as well as reducing SI, with minimal
short-term side effects. Additional studies are needed to
further investigate its mechanism of action, long-term
outcomes, and long-term adverse effects (including abuse)
and benefits. In addition, ketamine could potentially be
used as a prototype for further development of rapid-acting
antisuicidal medication with a practical route of administration
and the most favorable risk/benefit ratio.
Key Points
Preliminary data from randomized controlled trials
have demonstrated that ketamine may rapidly and
effectively control treatment-resistant depression,
though the effects are transient.
A small subset of studies has demonstrated similar
results in the effects of ketamine on suicidal ideation.
Ketamine has potential as a rapid treatment for
suicidal ideation and/or a possible model compound
for future drug development.

4 Discussion
With an estimated prevalence of mood disorders ranging
from 3.3 to 21.4 % and the substantially increased risk of
suicide among patients with mood disorders, treatment is
certainly warranted [19]. Current treatment options for
suicidality are limited. They include brain stimulation
therapeutics, such as ECT, and pharmacological intervention
(lithium, clozapine). The efficacy of lithium in treating
suicidality has been documented [20, 21] and has recently been reviewed and pooled in a recent meta-analysis of 48
studies [22]. Clozapine has also been shown to reduce
suicide risk in patients with schizophrenia [23, 24]. The
limitations of both lithium and clozapine include a longer
time to efficacy in this psychiatric emergency/urgency,
compared with the early response to ketamine [25]. Ketamine
seems to be gaining substantial evidence as a pharmacological
option for depression with a fast onset of
action, but its long-term effects need further investigation.
In addition, ketamine probably offers a faster onset of
action in terms of SI, but further work is certainly needed
in this area. Given the risk of suicide and even the
increasing rates of suicide in certain subgroups, such as
soldiers and veterans [26, 27], there is an urgent need for
faster therapeutics for SI and TRD. Importantly, suicidality
and suicide pose a high global burden of patient suffering
to families and society. Although several small-to-moderate
sized studies, in addition to several reviews, have been
published that have examined the efficacy of ketamine in
TRD, there are considerably fewer published data
specifically examining ketamine in patients presenting with
SI. Notably, only three studies have directly examined SI
as the primary outcome [11, 16, 17], while the rest
examined SI as the secondary outcome [4, 15, 18], not
including case reports. This review summarizes the current
published literature regarding ketamine as a treatment for
SI. The data so far show promising trends of ketamine
being an effective and rapid treatment with minimal side
Pharmacologically, ketamine is an N-methyl-D-aspartate
(NMDA) receptor antagonist. It has been used for anesthesia
in the USA since the 1970s. At subanesthetic doses,
ketamine has been shown to increase glutamate levels [3].
This mechanism is relevant, as glutamate regulation and
expression are altered in patients with major depressive
disorder (MDD). Studies have also demonstrated an
abnormal glutamate–glutamine–gamma-aminobutyric acid
cycle in patients with suicidality [28]. Furthermore, ketamine
has also been shown to work on nicotinic and opioid
receptors [29]. No other class of antidepressant medication
works to modulate the glutamatergic system, and research
continues into this, with the goal of characterizing the full
mechanism of action of ketamine and perhaps developing
other compounds that would have similar effects. Thus,
even if the approval and marketing of ketamine as a rapidacting
antisuicidal and antidepressant medication is not
realized, it could well be a prototype for development of
other medication(s) that retain the mechanism of action
with more favorable qualities and a lesser adverse effect
profile (such as a longer duration of action or less or no
addictive potential). Although the mechanisms explaining
the antisuicidal effect and the NMDA receptor antagonism
of ketamine are still unclear, some of the initial evidence
points to an anti-inflammatory action via the kynurenic
acid pathway. Strong suggestions as to the causal relationship
between inflammation and depression/suicidality
has come from studies demonstrating that cytokines [30,
31] and interferon-b [32] induce depression and suicidality.
Other recent studies have added to the notion of implicating
brain immune activation in the pathogenesis of suicidality.
For instance, one study showed microglial
activation of postmortem brain tissue in suicide victims
[33]. Another study found increased levels of the cytokine
interleukin-6 in cerebrospinal fluid from patients who had
attempted suicide [34]. Higher levels of inflammatory
markers have been shown in suicidal patients than in nonsuicidal
depressed patients [33, 35]. Inflammation leads to
production of both quinolinic acid (an NMDA agonist) and
kynurenic acid (a NMDA antagonist). An increased
quinolinic acid to kynurenic acid ratio leads to NMDA
receptor stimulation. The correlation between quinolinic
acid and Suicide Intent Scale scores indicates that changes
in glutamatergic neurotransmission could be specifically
linked to suicidality [36].
Small randomized controlled trials have demonstrated
the efficacy of ketamine in rapidly treating patients with
both TRD and/or bipolar depression [4, 8, 9, 11, 16–18].
Some studies have also examined suicide items as a secondary
measure in their depression rating scales [4, 7]. In
total, the studies examining ketamine and TRD have nearly
consistently demonstrated that ketamine provides relief
from depressive and suicidal symptoms, starting at 40 min
and lasting for as long as 5 days. Questions still remain as
to the long-term effects of this treatment, how much should
be administered and how often, any serious adverse effects,
and the mechanism of action.
Pharmacologically, ketamine has poor bioavailability
and is best administered via injection [37]. In their landmark
study, Berman et al. [4] found that a subanesthetic
dose (0.5 mg/kg) rapidly improved depressive symptoms.
Most of the subsequent studies have delivered ketamine as
a constant infusion for 40 min at a rate of 0.5 mg/kg.
Others have examined its efficacy after multiple infusions
and observed similar results [8, 13, 16, 38]. Currently, it is
recommended that ketamine be administered in a hospital
setting [39].


Characterizing the course of suicidal ideation response to ketamine

Characterizing the course of suicidal ideation response to ketamine PDF

2018 article from Carlos Zarate discussing the variable course outcomes with Ketamine for suicidality and correlations to serum markers and behavior and longevity of self-harm prior to treatment:


Background: : No pharmacological treatments exist for active suicidal ideation (SI), but the glutamatergic
modulator ketamine elicits rapid changes in SI. We developed data-driven subgroups of SI trajectories after
ketamine administration, then evaluated clinical, demographic, and neurobiological factors that might predict SI
response to ketamine.
Methods: : Data were pooled from five clinical ketamine trials. Treatment-resistant inpatients (n = 128) with
DSM-IV-TR-diagnosed major depressive disorder (MDD) or bipolar depression received one subanesthetic
(0.5 mg/kg) ketamine infusion over 40 min. Composite SI variable scores were analyzed using growth mixture
modeling to generate SI response classes, and class membership predictors were evaluated using multinomial
logistic regressions. Putative predictors included demographic variables and various peripheral plasma markers.
Results: : The best-fitting growth mixture model comprised three classes: Non-Responders (29%), Responders
(44%), and Remitters (27%). For Responders and Remitters, maximal improvements were achieved by Day 1.
Improvements in SI occurred independently of improvements in a composite Depressed Mood variable for
Responders, and partially independently for Remitters. Indicators of chronic SI and self-injury were associated
with belonging to the Non-Responder group. Higher levels of baseline plasma interleukin-5 (IL-5) were linked to
Remitters rather than Responders.
Limitations: : Subjects were not selected for active suicidal thoughts; findings only extend to Day 3; and plasma,
rather than CSF, markers were used.
Conclusion: : The results underscore the heterogeneity of SI response to ketamine and its potential independence
from changes in Depressed Mood. Individuals reporting symptoms suggesting a longstanding history of chronic
SI were less likely to respond or remit post-ketamine.

1. Introduction
Suicide poses a serious threat to public health. Worldwide, suicide
accounts for approximately 1 million deaths, and 10 million suicide
attempts are reported annually (World Health Organization, 2014). In
the United States, the national suicide rate has increased by approximately
28% over the last 15 years (Curtin et al., 2016). At the same
time, relatively few interventions for suicide risk exist. While treatments
such as clozapine and lithium have demonstrated effects on
suicidal behavior over weeks to months, these effects may be limited to
specific diagnoses (Cipriani et al., 2005; Griffiths et al., 2014). Currently,
no FDA-approved medications exist to treat suicidal ideation
(SI), leaving those who experience a suicidal crisis with limited options
for a reprieve of symptoms. Consequently, a critical need exists for
rapid-acting treatments that can be used in emergency settings.
A promising off-label agent for this purpose is the rapid-acting antidepressant
ketamine, which past studies have suggested reduces suicidal
thoughts (Diazgranados et al., 2010a; Murrough et al., 2015; Price
et al., 2009). A recent meta-analysis of 167 patients with a range of
mood disorder diagnoses found that ketamine reduced suicidal
thoughts compared to placebo as rapidly as within a few hours, with
effects lasting as long as seven days (Wilkinson et al., 2017). These
results are reinforced by newer findings of reduced active suicidal
ideation post-ketamine compared to a midazolam control(Grunebaum et al., 2018). As the efficacy literature develops in the era
of personalized medicine, two important issues must be addressed.
First, little is known about the acute course of SI following ketamine.
The speed with which antidepressant response occurs, and how much
improvement can be expected on average, has been documented for
single administrations of ketamine (Mathew et al., 2012; Sanacora
et al., 2017); in the limited available literature, researchers have
emulated previous studies examining antidepressant effect, where a
cutoff of 50% improvement demarcated response (Nierenberg and
DeCecco, 2001). Nevertheless, it remains unknown whether this categorization
accurately reflects the phenomenon of suicidal thoughts.
Empirically-derived approaches to the description of SI trajectory after
ketamine may be useful in operationalizing “response” in future clinical
Second, identifying demographic, clinical, or biological predictors
of SI response to ketamine would allow researchers and clinicians to
determine who is most likely to exhibit an SI response to ketamine. A
broad literature describes clinical and demographic predictors for suicide
risk (Franklin et al., 2017), and a smaller literature connects suicidal
thoughts and behaviors to plasma markers such as brain-derived
neurotrophic factor (BDNF) and cytokines (Bay-Richter et al., 2015;
Falcone et al., 2010; Isung et al., 2012; Serafini et al., 2017; Serafini
et al., 2013). However, no biomarkers have been shown to predict SI/
behavior response to intervention, a finding reinforced by the National
Action Alliance for Suicide Prevention’s Research Prioritization Task
Force’s Portfolio Analysis (National Action Alliance for Suicide
Prevention: Research Prioritization Task Force, 2015). Notably, predictor
analyses have the potential to reveal insights into personalized
treatments for suicidal individuals, as well as the neurobiology of SI
response. With respect to antidepressant response, for example, this
approach yielded the observation that individuals with a family history
of alcohol dependence may be more likely to exhibit an antidepressant
response to ketamine (Krystal et al., 2003; Niciu et al., 2014; PermodaOsip
et al., 2014).
The goals of this study were to elucidate trajectories of SI response
and identify predictors of that response, with the ultimate goal of
adding to the growing literature surrounding ketamine’s specific effects
on SI. In particular, we sought to determine whether the heterogeneous
patterns of change in SI after ketamine administration were better explained
by a model with two or more latent groups of trajectories rather
than a single average trajectory, using secondary analyses from previously
published clinical trials. These classes were then used to evaluate
potential clinical, demographic, and plasma biomarker predictors
of SI response to ketamine in order to generate hypotheses.. Discussion
This analysis used a data-driven approach to characterize SI response
to ketamine. The data were best explained by three trajectory
classes: one with severe average baseline SI and little to no response to
ketamine (Non-Responders), one with moderate average baseline levels
of SI and significant response to ketamine (Responders), and a third
with moderate average baseline levels of SI and complete remission of
SI by two days post-ketamine (Remitters). These findings suggest a
diversity of post-ketamine changes in SI that may not be captured under
traditional methods of categorizing response to treatment.
Furthermore, we found evidence that SI response and antidepressant
response could be distinguished from each other; one subset of participants
experienced improvement in SI that was partially explained by
improvements in Depressed Mood, while the other group’s improvements
in SI occurred independently of antidepressant response. With
regard to predictors of SI response trajectory, preliminary results suggest
the individuals least likely to experience improvement in SI postketamine
were those with the most severe SI and a history of self-injury.
Few plasma markers emerged as predictors of SI response in this study,
highlighting the limitations of connecting SI ratings of response with
biological markers.
The growth mixture modeling approach used here underscored the
heterogeneity of SI response to ketamine, which would not have been
captured by simply calculating the average trajectory. The class assignment
from this approach also differed from the definition of response
(50% reduction in symptoms) traditionally used in the antidepressant
literature, which often focuses on a specific timepoint rather
than the entire symptom trajectory. In comparing classification using a
50% response at Day 1 and Day 3 with the latent trajectory classes, we
found representation of almost every SI class across each responder
group, highlighting the potential limitations of the 50% response approach.
Further study is needed to determine which of these approaches
will prove more fruitful. Complete remission of SI has previously been
used as an outcome measure in clinical trials and in a meta-analysis of
ketamine’s efficacy (Grunebaum et al., 2017; Grunebaum et al., 2018;
Wilkinson et al., 2017), as well as in a study examining the relationship
between SI response to ketamine and changes in nocturnal wakefulness
(Vande Voort et al., 2017). One strength of the present study is that this
data-driven approach provides classifications that directly reflect the
phenomena under study as they are, as opposed to what they should be.
Especially when used in larger samples than the current study, this
approach is particularly promising in its ability to provide a more
nuanced understanding of the nature of SI response to ketamine.
Our results also support the idea that SI response in particular can target. First, it should be noted here that SI classes were not distinguishable
by baseline Depressed Mood scores; patients with the most
severe SI did not differ meaningfully in Depressed Mood scores from
those with the mildest SI. Second, while previous analyses of these data
documented that BMI and family history of alcohol dependence predicted
antidepressant response (Niciu et al., 2014), SI response was not
associated with these variables in the current analysis. Third, the antidepressant
response profiles of the SI classes suggest that SI response
and antidepressant response are not wholly redundant. This aligns with
previous clinical trials and meta-analytic reviews of the literature suggesting
that SI response to ketamine occurs partially independently of
antidepressant response (Grunebaum et al., 2018; Wilkinson et al.,
2017). Nevertheless, this independence did not hold true across both SI
response groups. Specifically, antidepressant and SI response were
clearly linked in Remitters, with depression accounting for half of the
changes in SI; however, in Responders, improvements in SI occurred
independently from improvements in Depressed Mood. These discrepancies
could be related to ketamine’s complex neurobiological
mechanisms or to the potentially low levels of clinical severity observed
in the Remitters.
Interestingly, the current analyses found no baseline demographic
variables that reliably distinguished Responders from Remitters. Some
phenotypic characteristics were uniquely associated with belonging to
the Non-Responder group, suggesting that a long-standing history of
self-injury or SI may indicate resistance to rapid changes in SI.
Relatedly, a recent, randomized clinical trial of repeat-dose ketamine
compared to placebo found that ketamine had no effect on SI in a
sample of patients selected for their longstanding, chronic history of SI
(Ionescu, 2017). These results highlight the importance of patient selection,
particularly for suicide risk. It should be stressed, however, that
SI does not necessarily translate to suicidal attempts or deaths; to our
knowledge, no study has yet linked ketamine with reduced risk of
suicidal behavior. Indeed, in the present study the SI Non-Responders
experienced limited antidepressant effects in response to ketamine, but
may nevertheless have improved on other, unmeasured symptoms that
could provide important benefit and relief. As the ketamine literature
develops, it will be important to identify which clinical symptom profiles
are most likely to have a robust anti-SI and anti-suicidal behavior
response to ketamine and which ones may benefit from other interventions.
While we evaluated a range of potential plasma markers previously
linked to suicidal ideation and behavior, in the present analysis only IL5
was associated with the SI Responder subgroup. Ketamine is known to
have anti-inflammatory effects (Zunszain et al., 2013), but the relationship
between antidepressant response and change in cytokine
levels remains unclear (Park et al., 2017). Cytokines have been linked
to suicidal behavior in the past; a recent meta-analysis found that lower
levels of IL-2 and IL-4, and higher levels of TGFbeta, were associated
with suicidal thoughts and behaviors (Serafini et al., 2013); however, toour knowledge IL-5 has not previously been linked to SI. Given the large
number of comparisons and lack of precedent in the literature, this
result may have been spurious and should be interpreted with caution.
A number of other results may reflect meaningful relationships, but the
high degree of variability—and the associated wide confidence intervals—suggests
that larger sample sizes are needed to better elucidate
the nature of any such relationships (e.g. baseline VEGF: χ2 = 6.13,
p = .05, but OR (95% CI) 13.33 (0.93–200.00)). Somewhat surprisingly,
plasma BDNF levels were not associated with responder class.
Previous studies of bipolar, but not MDD, samples found that plasma
BDNF levels were associated with SI response after ketamine
(Grunebaum, 2017; Grunebaum et al., 2017), suggesting that the mixed
diagnostic composition of this study may explain differences from
previous work. Studies exploring the relationship between BDNF and
antidepressant response to ketamine have also yielded mixed findings
(Haile et al., 2014; Machado-Vieira et al., 2009). Other data-driven
approaches have considered both biological and behavioral variables in
characterizing depression (Drysdale et al., 2017); a similar approach
might prove useful for predicting SI response.
The present study is associated with several strengths as well as
limitations. Strengths include the relatively large sample size of participants
who received ketamine, the use of composite SI scores from
previous exploratory factor analyses as opposed to individual items,
and the combination of clinical and biological markers as potential
predictors of class membership. Limitations include patient selection
methods, as these patients were part of an antidepressant trial and were
not selected for active suicidal thoughts, as well as the exploratory
nature of the analysis. As stated above, suicidal thoughts do not necessarily
equate to suicidal behavior, and class membership would thus
not necessarily correspond with an overall reduction in suicide risk.
Another limitation is that results were collapsed across several clinical
trials with slight variations in study design, and findings were thus only
extended to Day 3 rather than a week after ketamine administration. As
a result, only a subset of the sample could be used for predictive analyses.
In addition, plasma—rather than CSF—markers were used, and
the latter might better indicate underlying biology due to proximity to
the brain, though certain markers such as plasma BDNF may be related
to platelet storage, rather than the brain (Chacón-Fernández et al.,
2016). Comparison of results to trajectories of suicide-specific measures,
such as the Scale for Suicide Ideation (Beck et al., 1979), may also
give further insight into specific SI content. Finally, many clinical
predictors were collected upon hospital admission; future analyses
could use formal assessments, such as the Childhood Traumatic Questionnaire
(Bernstein et al., 1994), assessment of personality disorders,
or diagnoses such as post-traumatic stress disorder (PTSD) as potential
indicators of response.
Despite these limitations, the study demonstrates the utility of a
data-driven approach for characterizing the heterogeneity of SI response
to a rapid-acting intervention. This allows for a more finegrained
analysis of symptoms than would be permitted by traditionalapproaches, such as overall average response or dichotomization at
50% reduction in symptoms. This study identified several findings of
note. These included distinguishing at least three patterns of SI response
to ketamine and finding that subjects who exhibited more severe SI at
baseline were not likely to experience an SI response to ketamine.

A little smile may make you less depressed – Botox and depression treatment



Converging lines of evidence suggest a role for facial expressions in the pathophysiology and treatment of mood disorders. To determine the antidepressant effect of onabotulinumtoxinA (OBA) treatment of corrugator and procerus muscles in people with major depressive disorder, we conducted a double blind, randomized, placebo-controlled trial. In an outpatient clinical research center, eighty-five subjects with DSM-IV major depression were randomized to receive either OBA (29 units for females and 40 units for males) or saline injections into corrugator and procerus frown muscles (74 subjects were entered into the analysis). Subjects were rated at screening, and 3 and 6 weeks after OBA treatment. The primary outcome measure was the response rate, as defined by ! 50% decrease in score on the MontgomeryeAsberg Depression Rating Scale (MADRS). Response rates at 6 weeks from the date of injection were 52% and 15% in the OBA and placebo groups, respectively (Chi-Square (1) ¼ 11.2, p < 0.001, Fisher p < 0.001). The secondary outcome measure of remission rate (MADRS score of 10 or less) was 27% with OBA and 7% with placebo (Chi-square (1) ¼ 5.1, p < 0.02, Fisher p < 0.03). Six weeks after a single treatment, MADRS scores of subjects were reduced on average by 47% in those given OBA, and by 21% in those given placebo (ManneWhitney U, p < 0.0005). In conclusion, a single treatment with OBA to the corrugator and procerus muscles appears to induce a significant and sustained antidepressant effect in patients with major depression.


We develop the concept of emotional proprioception, whereby the muscles of facial expression play a central role in encoding and transmitting information to the brain’s emotional circuitry, and describe its underlying neuroanatomy. We explore the role of facial expression in both reflecting and influencing depressed mood. The circuitry involved in this latter effect is a logical target for treatment with botulinum toxin, and we review the evidence in support of this strategy. Clinical trial data suggest that botulinum toxin is effective in treating depression. We discuss the clinical and theoretical implications of these data. This novel treatment approach is just one example of the potential importance of the cranial nerves in the treatment of depression.



Chronic migraine affects 2% of the population. It results in substantial disability and reduced quality of life. Medications used for prophylaxis in episodic migraine may also work in chronic migraine. The efficacy and safety of OnabotulinumtoxinA (BOTOX) in adults with chronic migraine was confirmed in the PREEMPT programme. However, there are few real-life data of its use.

Method: 254 adults with chronic migraine were injected with OnabotulinumtoxinA BOTOX as per PREEMPT Protocol between July 2010 and May 2013, their headache data were collected using the Hull headache diary and analysed to look for headache, migraine days decrements, crystal clear days increment in the month post treatment, we looked at the 50% responder rate as well.

Results: Our prospective analysis shows that OnabotulinumtoxinA, significantly, reduced the number of headache and migraine days, and increased the number of headache free days. OnabotulinumtoxinA Botox also improved patients’ quality of life. We believe that these results represent the largest post-marketing cohort of patients treated with OnabotulinumtoxinA in the real-life clinical setting.

 Conclusion: OnabotulinumtoxinA is a valuable addition to current treatment options in patients with chronic migraine. Our results support findings of PREEMPT study in a large cohort of patients, we believe, is representative of the patients seen in an average tertiary headache centre. While it can be used as a first line prophylaxis its cost may restrict its use to more refractory patients who failed three oral preventive treatments

http://www.botoxfordepression.com/ < Website promoting botox use for depression


Insane Medicine – Inflammation as a cause of psychiatric conditions!





Clustering of Depression and Inflammation in Adolescents Previously Exposed to Childhood Adversity

http://www.sobp.org/files/public/BPS%20Press%20Release_Miller%20and%20Cole_FINAL.pdf   <<< Childhood Adversity Increases Risk for Depression and Chronic Inflammation

Insane Medicine – Cardiac Rehabilitation will save your life

Cardiac rehab and healthy eating save lives
Cardiac rehab and healthy eating save lives!

eat healthy

  • Have you had a heart attack? Then why aren’t you in cardiac rehab if your doctor says it’s okay?
  • Those who are involved in cardiac rehab have a 47 % decrease in heart attack risk over the next two years! Also, those who participate have fewer hospital admissions and live longer.
  • Cardiac rehab is an option post-heart attack, as well as for those with arrhythmias and heart failure. It is associated with decreased mortality and prolonged survival.
  • Cardiac Rehab is coached by trained professionals who teach you how to appropriately exercise based on your capabilities and prescription. This improves your functional status.
  • It also involves nutritional counseling, teaching the patient to eat a low fat and sodium diet to help manage cholesterol levels and blood pressure. This allows you to maintain a healthy weight.
  • cardiac rehab also helps you maintain a regimen. More important, one must take their prescribed medications for optimal outcomes. Compliance leads to success. Education about medications that are important is a key  factor.
  • Cardiac rehab also educates one to avoid unhealthy habits, such as smoking and maintaining diet. likewise, the mental aspect of a post-cardiac condition is crucial in maximizing outcomes. Depression and other mental disorders must be fully addressed and treated.
  • Exercise creates stronger muscles and improved cardiovascular fitness that improves ones emotional state as well. Cardiac rehab must be continued in the home environment for maximal impact.
  • The journal BMJ showed that even a little bit of exercise provides noticeable benefits of health. the goal is 150 minutes of exercise per week, but even small amounts of physical activity may decrease the mortality risk.
  • Exercise helps with depression and boosts your natural endorphins that make you feel better, resulting in increased energy levels. Exercise allows you to take control of your life and is a mood enhancer that gives you an overall sense of well-being.
  • Depression and anxiety can be blunted by such exercise programs, especially when they are maintained at home as well. Meditation and behavior modification are key components to creating a healthy lifestyle. People who are depressed and feel hopeless have a higher rate of dying from their cardiac disease. exercise at least 30 minutes a day, working your way up to that amount even if you don’t have the internal motivation to do so.

Insane Medicine – Lowering Dementia Risk


Research is demonstrating that treating multiple risk factors for dementia results in better outcomes than treating each factor individually. Risk factors include:

  1. Poor nutrition
  2. obesity’smoking
  3. physical inactivity
  4. cardiovascular risks
  5. depression
  6. social isolation
  7. lack of mental stimulation

Strategies to help deal with these risks have been shown to help improve cognitive performance. Just treating single variables such as high blood pressure or lack of exercise has less effect than hitting multiple factors at once. A study in Lancet Neurology (August 2014) revealed that one-third of Alzheimer’s Disease (AD) cases are attributable to modifiable factors and thus AD may be reduced in prevalence by improved education , treatment of depression, and management of vascular risk factors such as physical inactivity, smoking, hypertension, obesity, and diabetes.

  • Get regular exercise: this reduces stress, improves blood flow to the brain, strengthens connection of neurons in the brain, improves medical health and balance, thus reducing falls. The goal is 30 minutes of aerobic activity five times a week (walking, dancing, biking as examples) and strength training twice a week.
  • Challenge your brain: Demanding brain activities utilizing different aspects of your intellect help protect against cognitive decline, making your mind more efficient and able to focus. So expose yourself to new ideas and challenges mentally, so that you can maintain your memory skills and concentration abilities. Things like cross-word puzzles, checkers or cards help build up your brain as do math problems. Research shows that staying intellectually engaged may prevent AD. These types of brain challenges add to your cognitive reserve. Social interaction also plays a role in preventing cognitive decline. It has been found that those who play more games or puzzles were more likely to perform better on test of memory, learning, and information processing. They also have greater brain volume in areas associated with memory. Mental workouts enhance brain blood flow and promote cell growth, stronger neuron connections, and keep the brain efficient. It makes the brain less sensitive to trauma such as drugs, stroke, or disease. The internet has resources to help:  http://brainworkshop.sourceforge.net/  or http://sporcle.com/  or http://syvum.com/teasers/  or http://www.braingle.com/  or http://www.billsgames.com/brain-teasers/   So consider crossword puzzles, jigsaw puzzles, word searches, math problems, an brainteasers to exercise your mind!
  • Treat mental illness, especially depression: Sadness, hopelessness, and lack of energy may signal depression. Depression is associated with a high risk of cognitive decline. See your doctor to help get treatment.
  • Eat a healthy diet: Eat complex carbohydrates such as whole grains, legumes, fruits, and vegetables. Avoid sodas, sweets, and excess sugars. Protein is essential for growth and cell maintenance, so consider lean meats, fish, poultry, eggs, low fat dairy,  nuts, and beans. Chose healthy fats such as omega-3 fatty acids found in flaxseed oil, fish, and nuts. Monounsaturated fats are also healthful and is present in olive and canola oils. Polyunsaturated fats from corn, safflower, and sunflower seeds are fine as well. Avoid trans-fats. Remember to include your micronutrients and phytochemicals (found in plant sources).
  • Treat cardiovascular risks: Stop smoking, lose weight, be physically active, treat high blood pressure and diabetes, take your prescribed medications.

Avoid Trans-fats in your diet. It is found in many junk foods, especially fast foods, processed foods, baked goods, margarine, and other sources. These products and trans-fats perform about 10% worse on cognitive tests than those who consumed minimal amounts. Trans-fats promote oxidative stress and damage the memory center of the brain, the hippocampus.

Magnesium is essential for brain functioning. It is found in green leafy vegetables, whole grains, nuts, legumes, and hard water. Magnesium helps in energy production, needed especially in the brain. It helps in the formation and release of neurotransmitters as well as functioning of connections in the brain (synapses) to process new information. Studies in Molecular Brain (September 2014) demonstrated that magnesium L-threonate (MgT) supplementation prevented memory decline and prevented synapse loss in mice prone to AD. It also reduced the deposition of beta-amyloid protein in the brain (a cause of AD) Risk factors for magnesium depletion include chronic alcoholism, diabetes, excessive coffee intake, inflammatory bowel disease such as Chrone’s disease, diuretic intake, liver and kidney disease,  and excessive soda and salt intake.The RDA is 400 mg a day – http://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/  This link points to sources of magnesium for your diet. Foods included are Almonds, spinach, cashews, peanuts, shredded wheat cereal, soy milk, black beans, whole wheat bread, avocado, baked potato, brown rice, plain yogurt, and others.

This sounds dumb but avoid head injury – it has been shown that older adults who have a head injury are at higher risk of dementia, especially over the age of 65. The main reason for these injuries are falls, many of which are preventable and may be due to deconditioning and weakness from lack of exercise. Remember that exercise increases strength and balance.

Remember to not be anxious over your health – don’t become a hypochondriac. Maintain your health through proper eating, exercise, risk management of cardiovascular problems (high blood pressure, high cholesterol, smoking cessation), taking your prescribed medications, and regular physician check-ups will maximize your health. Don’t get preoccupied with health matters and fears of disease such that they interfere with your daily activities and enjoyments in life. Keep yourself busy and distracted by learning new tasks and volunteering. Consider meditation, relaxing your body and mind, concentrating on the present moment. Exercise your body to reduce stress and reduce your anxiety. This will build your physical strength and increase your feelings of well-being. Keep your head up with positive feeling and be grateful for the good things in your life and those things you can control. Don’t stress out!!




Insane medicine: Pregnant mothers may need to watch their fat intake during pregnancy – it may affect their children!

Insane medicine - Fat mice get fat by eating fat diets. The effect damages their progeny.
Insane medicine – Fat mice get fat by eating fat diets. The effect damages their progeny.
  • The average American diet has 37% fat content. The recommended amount is 25-35% according to the 2010 dietary guidelines. Four studies have shown the bad impact that high fat consumption during pregnancy has on the fetus.
  • Mice fed 45 % fat diets during pregnancy demonstrated deficits in memory with higher anxiety and depression scores as well! What’s worse is there was epigenetic effect as well – the following generation of mice displayed memory loss and behavioral change as well. Here is the link: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?mID=3527&sKey=f830412f-200d-4363-8e53-e8af37236afe&cKey=f00a8887-5be2-467f-a500-480d7b3bcac8&mKey=54c85d94-6d69-4b09-afaa-502c0e680ca7
  • A study in rats also showed that the mother’s diet, if high in saturated fat and branched chain amino acids(BCAA), would prime the microglia of their offspring. Microglia are the mmune cells of the brain and will secrete pro-inflammatory cytokines in the hippocampus (a learning center). Also high levels of BCAA compete with tryptophan transport across the blood brain barrier. When there is less tryptophan in the brain, the brain makes less serotonin which then results in anxiety! The pups were found to have depression and anxiety scores that were much higher than pups born to mothers who ate a more fat-restricted diet. Here is the link: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=8d86b6b5-65d9-4dc4-9b97-53b5a5db4027&cKey=529d5e00-6f15-426c-8ee3-c9c61424e666&mKey=54c85d94-6d69-4b09-afaa-502c0e680ca7
  • Other studies demonstrated that a high fat diet in the pregnant mother causes the down-regulation of oxytocin systems in the brain of offspring and causes anxiety to be prevalant in the progeny. This effect does not occur in the pups of normal fed pregnant female rats. In this study it was found that the fewer numbers of oxytocin-positive neurons within the PVN (paraventricular nucleus), the more anxious the rats were as adults. Oxytocin projections to the brainstem acts as an appetite suppressant,  hence leading to overeating in the progeny of overfed pregnant females. Oxytocin also plays a role in maternal behaviors as well. Mother rats literally groom their daughters to be attentive or neglectful mothers themselves and this is associated with the presence of normal numbers of oxytocin projections. If a rat has fewer oxytocin projections, they will be neglectful parents more likely. Hence multiple pathways of brain function  may be affected in the young of a high-fat diet mother. Here is a link: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=93a801db-9e49-4d58-b917-97948ec69a18&cKey=74611e5c-0fa7-4ff0-9276-b94be31da2df&mKey=54c85d94-6d69-4b09-afaa-502c0e680ca7
  • These effects also occur in primate studies as well – monkeys whose mothers are fed high fat diets have fewer dopamine projections to the nucleus accumbens ‘reward center’ of the brain. As a result, they have a reward deficiency when they eat food and don’t get satiated at a normal level of food. Rather, they  must take in more food to get the same amount of reward as another monkey that came from a normal-fed mother and had normal dopamine projections in the brain. Thus they get fatter.
  • Dietary guidelines recommend a diet of 25-27% fat. See this link for the recommendations of a standard diet:  http://www.health.gov/dietaryguidelines/dga2010/DietaryGuidelines2010.pdf  However, the average person takes in 37% fat or more!! See this link showing how much we really take in:  http://jn.nutrition.org/content/140/10/1832.long
  • We eat more than we think. We need to recognize that our food choices and stress patterns can affect our children through epigenetic mechanisms especially. We can set up our children for failure. These studies are done in standard models for humans and show the impact high fat diets in pregnancy  have on their children: Memory deficits, anxiety, depression, and future weight problems may echo the studies in rat and monkey populations.  The apple doesn’t fall far from the tree, for it seems that overweight parents have overweight children. Food for thought!!
  • http://fatmouse.org/